Renal Telemedicine & Telehealth
Where Do We Stand?

E. Kaldoudi, V. Vargemezis
School of Medicine
Democritus University of Thrace
Alexandroupoli, Greece

MEDICON 2010, Chalkidiki, Greece, May 27-30, 2010
renal disease

early diagnosis, efficient & agile management and prognosis are imperative, as kidney chronic disease may lead to

- several and severe health complications
 (hypertension, nephrogenic anemia, peripheral neuropathy, cardiovascular disease, ...)

- kidney failure

- considerably reduced quality of life

- (eventually) death
renal failure incidence in 2006

USA > 350/M

Japan ~ 300/M

several EU countries ~ 180/M

Bars: Rate per million population (USRDS 2008)
renal failure projection

patients with renal failure increase, mainly due to increased incidents of diabetes and hypertension
treatment for kidney failure

- renal transplantation

- dialysis: removal of water and body wastes that build up in failing kidneys
 - hemodialysis at the hospital (artificial kidney)
 - home hemodialysis
 - peritoneal dialysis (at home)
monitoring renal disease

a good measure for early diagnosis, treatment adjustment and rehabilitation

- chronic renal patients: follow up (esp. when co-morbidity) and prepare for kidney replacement therapy

- patients on peritoneal dialysis: monitor and redesign individual dialysis scheme (solely delivered at home)

- patients on hemodialysis: monitor individual dialysis adequacy and delivered dose - monitor home hemodialysis

- patients on wait-list for transplantation: monitor vital signs and monitor/ensure overall health condition

- transplanted patients: monitor adequate kidney function, health condition, adherence to prescription/diet
telematics for renal patients

- **1998 USA/Australia**: teleconsultations (hemodialysis)
- **2000-2007 Europe**: teleconsultations (hemodialysis & peritoneal dialysis)
- **2000 Japan/Europe**: telemetry of dialysis data
- ~**2005 companies of dialysis equipment incorporate telemetry in some home dialysis models**
- **2007 Greece**: integrated web-based service for telemonitoring and telemetry (home dialysis)
 - the PERKA service - Democritus University of Thrace and collaborating IT companies
problems in current approaches

- treatment method-centric approaches
 - emphasis on a single method, no continuous monitoring for patients switching between treatments

- data/disease-centric approaches
 - emphasis on disease monitoring, no real support for a mobile, active person in their everyday life

- clinically oriented approaches
 - emphasis on supporting management of the individual, no real support for overall management of the disease
problems in current approaches

- proprietary technical solutions
 - emphasis on proprietary software, no standardized interfaces or open, service oriented systems

- misleading evaluation of the technological intervention
 - the intervention is seen either as a “drug” or as an “unavoidable research project aftermath”
 - little emphasis on learning and improving
the PERKA service

- **main features**
 - web based service - web service architecture (with standard XML/SOAP interfaces)
 - data transfer via mobile telephony
 - dynamic, personalized measurement set-up by clinician (can be tailored to support monitoring requirements of different treatment methods)

- **current deployment**
 - region of East Macedonia and Thrace, Greece
 - https://portal.perka.gr/
PERKA

PERKA Data Center
- patient data
- data collection & data processing
- Web Service

PERKA portal

Internet

Patient Unit
- medical devices

HTTPS

XML/SOAP

telemetry data

administrative & portal data

MEDICON 2010, May 27-30, 2010
patient unit
<table>
<thead>
<tr>
<th>Περιγραφή</th>
<th>Μον.</th>
<th>min</th>
<th>max</th>
<th>Εν. Τιμή</th>
</tr>
</thead>
<tbody>
<tr>
<td>Αριθμός Αλλαγών</td>
<td>Integer</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Όγκος αρχικής εξαγωγής</td>
<td>ml</td>
<td>500</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Συνολικός ημερήσιος Όγκος εξερχομένου διαλύματος</td>
<td>ml</td>
<td>500</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Διάρκεια Αλλαγής</td>
<td>Integer</td>
<td>0</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Συννταγή Μέτρησης

- **Επέγγυα Μέτρηση**: Κανονικό
- **Ομάδα Ασθενών**: APD
- **Ασθενής**: Αλλαγή APD
- **Ημερομηνία Έναρξης**: 09/12/2008 09:00
- **Χρονικό Παράθυρο**: 480.00 min
- **Τύπος Προγραμματισμού**: Εβδομαδιαίο
- **Κάθε**: 1.00
- **Είδος Λήξης**: Χωρίς Τέλος

Περιγραφή Περιγραφής

- Αλλαγή APD (24)

Home

- Ασθενείς
- Μέτρησες
- Ειδοποιήσεις - Συναγερμοί
<table>
<thead>
<tr>
<th>Πρώιμες Μετρήσεις APD</th>
<th>03/10/2009 09:00</th>
<th>03/10/2009 08:51</th>
<th>Συστολική Πίεση</th>
<th>12,10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>03/10/2009 09:00</td>
<td>03/10/2009 08:51</td>
<td>Διαστολική Πίεση</td>
<td>08,50</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>02/10/2009 09:00</td>
<td>02/10/2009 08:15</td>
<td>Σφυκτικία</td>
<td>080</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>02/10/2009 09:00</td>
<td>02/10/2009 08:15</td>
<td>Συστολική Πίεση</td>
<td>12,00</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>02/10/2009 09:00</td>
<td>02/10/2009 08:15</td>
<td>Διαστολική Πίεση</td>
<td>08,60</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>02/10/2009 09:00</td>
<td>02/10/2009 08:15</td>
<td>Σφυκτικία</td>
<td>073</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>01/10/2009 09:00</td>
<td>01/10/2009 07:28</td>
<td>Συστολική Πίεση</td>
<td>13,10</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>01/10/2009 09:00</td>
<td>01/10/2009 07:28</td>
<td>Διαστολική Πίεση</td>
<td>09,00</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>01/10/2009 09:00</td>
<td>01/10/2009 07:28</td>
<td>Σφυκτικία</td>
<td>086</td>
</tr>
<tr>
<td>Πρώιμες Μετρήσεις APD</td>
<td>30/09/2009 09:00</td>
<td>30/09/2009 07:32</td>
<td>Συστολική Πίεση</td>
<td>13,00</td>
</tr>
</tbody>
</table>
evaluating PERKA within context

- evaluation draws on interpretivism (subjectivism)

- emphasis on trying to understand the context of the service, and the process whereby this service influences and is influenced by its context

- based on a two-dimensional evaluation framework (adapted from Cornford T, Doukidis GI, Forster D. - 1994)

 - study structure, process, and outcome
 - for the service functions, human users, and organizational context
Evaluation Framework by Cornford et al

<table>
<thead>
<tr>
<th></th>
<th>System functions</th>
<th>Human perspectives</th>
<th>Organizational context</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td>technical detail</td>
<td>changed work conditions and implied requirements</td>
<td>sustainability, opportunity costs, management needs, skill requirements</td>
</tr>
<tr>
<td>Process</td>
<td>information processing correct and valid</td>
<td>human participation in tasks; social interaction</td>
<td>altered delivery and practice</td>
</tr>
<tr>
<td>Outcome</td>
<td>relevant, applicable, reliable</td>
<td>quality of service and outcomes</td>
<td>effect in the world</td>
</tr>
</tbody>
</table>

Cornford T, Doukidis GI, Forster D. (1994)
adapting the framework for home telecare

<table>
<thead>
<tr>
<th>Structure</th>
<th>System functions</th>
<th>Human perspectives</th>
<th>Organizational context</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>what are the real hardware and software requirements; does the full set of system components work together in a technical sense?</td>
<td>Physicians</td>
<td>Patients</td>
</tr>
<tr>
<td>Process</td>
<td>is the method by which the system transforms its data, the information processing, correct and valid?</td>
<td>how was the user’s mode of operation changed? Are these changes seen as desirable to the user as an individual, and in general to the user’s organizational role?</td>
<td>how is the patient’s experience of health care altered at the point of contact with the system?</td>
</tr>
<tr>
<td>Outcome</td>
<td>are the results relevant, applicable and reliable? Does it meet the requirement specifications?</td>
<td>was the overall effectiveness of the clinician within the health care system enhanced?</td>
<td>does the use of the system result in changes in the quality of service and better health for the patient?</td>
</tr>
</tbody>
</table>
evaluating PERKA

phase 1
during design, development and prototype pilot implementation
- 18 months of design, development, lab testing (Oct. 06 – Mar 08)
- 3 months of pilot implementation (Apr 08 – Jun 08)
- access function and incorporate user requirements

phase 2
deployment as experimental clinical protocol
- 24 months of experimental deployment (Dec 08 – Nov 10)
- ~10 patients in a regional setting
- to assess user satisfaction and clinical outcome
progress beyond the state-of-the-art

requires

- model and integrate context
 - health and social context
 - for patients and healthcare personnel

- integrate patient education via participative approaches

- provide tools for overall disease (not only patient)
 monitoring, management and planning (coupled to real-time disease monitoring)
acknowledgement

work partly funded under the R&D grants:

- “PERKA: Telecare Service for Peritoneal Dialysis”, Regional Operational Programme, East Macedonia and Thrace, Ministry of Development, Greece & the European Regional Development Fund

- “Novel System for Monitoring Renal Failure”, Desmi 2008, Republic of Cyprus & the European Regional Development Fund
E. Kaldoudi, and V. Vargemezis, “Renal Telemedicine and Telehealth - Where Do We Stand?”, In P.D. Bamidis and N. Pallikarakis (Eds.): - IFMBE Proceedings (MEDICON 2010, the 12th Mediterranean Conference on Medical and Biological Engineering and Computing, Chalkidiki, May 27-30, 2010), vol. 29, pp. 920-923, 2010