Clinical Information Retrieval to Support Teaching and Research in Radiology

E. Kaldoudi, D. Karaiskakis, J. Manavis
School of Medicine
Democritus University of Thrace - Greece

supporting medical teaching & research

- major achievement
 - information dissemination
 - towards advanced information management
- current challenge
 - bridge healthcare enterprise with academic and research environment
 - i.e. integrate clinical data with teaching and research software tools

the case of Radiology

DICOM

DICOM server

intranet or internet

web browser

DICOM

research & education

requirements

- flexibility
 - change and adapt easily, and expand to cover emerging needs
- easiness to implement
 - does NOT require expensive infrastructure & long development times
- security
 - data anonymization & integrity
- adherence to open standards
 - accommodate synergy with disparate systems & the open standards academic and research infrastructure

our approach

DICOM

teaching & research

end-user applications

added-value web services

web services acting as wrappers

conventional clinical information systems
web service paradigm

- middleware technology for program-to-program interactions
- URI-addressable software with certain functionality
- can act as wrappers for legacy applications

Service Oriented Architecture

web service paradigm

- enable disparate systems to work together
- based on open internet standards
- broad industry support

complex DICOM search

- end-user application
- DICOM web service
- DOM database
- XML/SOAP
- DICOM sources

DIM web service

- DICOM services (SOPs)
- query
- retrieve
- store
- login
- web service methods

performance issues

- test scenario A
 - 26% increase in overall time
 - 4% of overall time for conversion

- mean of 1200 C-MOVE operations
 - conventional: T1 = 625±41 ms
 - DIM solution: T1 = 625±42 ms

- test scenario B
 - 55% decrease in overall time

- complex association negotiation in DICOM is limited within the same computer
DQM web service

- complex query
- retrieve DICOM tag info
- populate & query
- attribute database

database model

- DicomObject
 - PK: DicomObjectID
 - DicomObjectFileName
 - SeriesUID
 - DicomAttribute
 - PK: DicomAttributeID
 - FK: DicomObjectID
 - Tag
 - TagDescription
 - TagValue
 - DataType
 - ItemID
 - SequenceID
 - Sequence
 - PK: SequenceID
 - FK1: DicomObjectID
 - Item
 - PK: ItemID
 - FK1: SequenceID

implementation issues

- technologies
 - C# (MS .Net Framework 1.1)
 - DicomObjects 4.1 (Medical Connections)
- system requirements
 - MS Internet Information Server >5.x
 - MS .Net Framework 1.1
 - MS SQL Server 2000 Desktop Engine (MSDE)
- security
 - SSL, user authentication, role-based data anonymization

http://iris.med.duth.gr/

acknowledgements

work carried out as part of the project
“Reforming Undergraduate Education in the School of Medicine, DUTH”

funded by the:
Managing Authority of the Operational Programme for Education and Initial Vocational Training

Greek Ministry of National Education and Religious Affairs

European Community Co-financing
European Social Fund and European Regional Development Fund
DIM testing set-up

DICOM server - eFilm workstation v1.5.3 on Intel Pentium 4 processor at 2.8 GHz, 1GB RAM (unit C1)

DICOM aware application
DIM web service
DIM web service aware application

on Intel Pentium 4 processor at 2.8 GHz, and 512 MB RAM (units C2-C4)

testing data - DICOM C-MOVE operation performed for 1200 different DICOM objects in a hospital 100 MB/s LAN

DIM testing set-up ⇒ scenario A

T1=625±41 ms
T2=626±42 ms
T3=27±11 ms
T4=134±66 ms

DIM solution:
26% increase in time
4% for data conversion

DIM testing set-up ⇒ scenario B

T1=625±41 ms (in A: 625±41)
T2=121±21 ms (in A: 626±42)
T3=28±12 ms (in A: 27±11)
T4=132±65 ms (in A: 134±66)

DIM solution:
55% decrease in time

DICOM search engine

dynamic user interface

- XML based description of interface elements
 - add/change interface elements
 - support multilinguality
 - facilitate personalization

- values for drop-down and checkbox lists automatically updated according to database

further work

- towards a cluster of web services
 - 1st tier: facades for legacy systems
 - 2nd tier: added value services: data mining & knowledge extraction

- special purpose end-user applications for
 - medical teaching file authoring
 - advanced data processing