International Workshop on:

Home telemonitoring, and its status in Cyprus, Greece, and Italy

Thessaloniki

September 1, 2008
Telecare in Peritoneal Dialysis
Current Trends and Design Considerations

Eleni Kaldoudi
Vassilis Vargemezis

School of Medicine
Democritus University of Thrace
Greece
peritoneal dialysis

- one of the basic treatments for patients with end stage renal disease (ESRD)
 - artificial kidney (haemodialysis)
 - peritoneal dialysis
 - renal transplant

- implemented at patients’ home and allows
 - continuity of personal and professional activities
 - mobility (vacation, travel, etc)
 - better & regular nutrition
 - better results in future renal transplant

E. Kaldoudi & V. Vargemezis
end stage renal disease frequency
expected ESRD frequency increase

431,000
treatment for ESRD

1. renal transplantation

2. dialysis: removal of water and body wastes that build up in failing kidneys

 artificial kidney
 ⇨ blood cleaning outside the human body via specialized equipment (artificial kidney)
 ⇨ performed in a hospital (rarely at home)
 ⇨ 4 hours X 3 times per week

peritoneal dialysis
 ⇨ blood cleaning based on fluid exchanges in the peritoneal cavity
 ⇨ performed at patient's home, throughout the day/night
peritoneal dialysis

- A dialysis fluid is inserted in the peritoneal cavity, after a period of time becomes saturated with waste and then it is exchanged with new fluid.
 - ~4 exchanges per day
 (or a number of exchanges during the night)
 - Requires a catheter in the peritoneal cavity & a special mobile unit for fluid exchange
 - Performed at patient’s home
 - ~1 scheduled hospital visit per month
peritoneal dialysis

CAPD - continuous ambulatory peritoneal dialysis

APD - automated peritoneal dialysis
peritoneal dialysis

- effectiveness of the method depends among else on the specific dialysis scheme, which depends on:
 - patient's weight changes
 - type and amount of fluid inserted and exerted
 - blood pressure, heart rate, (ECG, blood glucose, ...)

- easy to implement - difficult to deal with complications

- declining in some countries, increasing in others

- 10–30 % of dialysis patients internationally
dialysis patients by treatment method

USRDS 2004
being performed solely at home, peritoneal dialysis is a unique candidate for support via telematic services

- psychological support of patient via teleconferencing

- patient retraining

- evaluation of catheter exit site and oedema presence

- telemetry of vital sign and PD parameters that affect the effectiveness of the method

- cycler monitoring and (possibly) intervention to change prescription
current status

- Germany: videoconferencing for CAPD
 - patient consulting & psychological support

- Spain: videoconferencing to substitute visit to clinic
 - patient consulting, catheter exit examination

- Japan & Italy: videoconferencing & telemetry

- Fresenious (http://www.fmc-ag.com/) & Baxter (http://www.baxter.com/)
 - certain APD models include ability for cycler data telemetry
current status

- Project Phoenix, Washington, USA
 - haemodialysis, unit-to-office, teleconference + signs

- Saitama, Japan
 - APD & CAPD, home-to-unit, mobile phone, signs + teleconference

- Bonn, Germany
 - CAPD, home-to-unit, teleconference

- Spain
 - teleconference

- Milan, Italy
 - APD pediatric, home-to-unit, modem, cycler data + teleconference

- Diatelic Project, Nancy, France
 - experimental, biosings, intelligent alarms
current status

Baxter & Fresenious

- automatic telemetry of cycler data
- via a disk (offline) and/or via modem (online)
- include server application for patient data monitoring
- available only for certain APD cycler models
- provider specific - not standard based or interoperable
telecare for peritoneal dialysis

- useful in detecting and solving technical problems
- low cost
- easy to incorporate in clinic/patient daily routine
- saves hospital time and load
- satisfactory for patient - generally improves QoL

however

design considerations and technical limitations in existing solutions prohibit widespread use !!!!
requirements (not currently met)

- telemetry of any parameter: biometric, vital sign, PD scheme specifics, cycler data,

- support of both CAPD and APD

- support various types of communication (mobile telephony, data network, standard telephony, etc)

- modular design, based on standards (generic middleware standards to allow interoperability among third party providers)
PERKA: Telecare for Peritoneal Dialysis

- competitive R&D grant funded by the
 - Regional Operational Programme, East Macedonia and Thrace, Ministry of Development, Greece
 - European Regional Development Fund

- project specifics
 - duration: 2006-2008
 - budget: 640,000 €
 - Scientific Coordinator: Prof. V. Vargemezis, DUTH
 - Partners: Alpha (www.alphait.gr)
 Vidavo (www.vidavo.gr)
 Exedron (www.exedron.com) subcontractor
supporting APD & CAPD

- patient telemonitoring
- intelligent alarms
- archiving, processing and management of patient telemetric data
- statistics and data mining

telemetry of
- peritoneal dialysis schema data
- patient weight
- blood pressure
- heart rate
- ...

other clinical information systems
PERKA

PERKA Data Center

1. Patient data
2. Data collection & data processing Web Service

Internet

XML/SOAP

Patient Unit

1. Telemetry data
2. Medical devices

PERKA portal

HTTPS

1. HTTPS
2. Patient
3. Medical personnel
server application - patient data
server application - measurement definition
server application - measurement definition
server application - PD prescription
server application - telemetry data view
patient unit - PDA
patient unit - PC
patient unit - PC
work funded under the R&D grant

“PERKA: Telecare Service for Peritoneal Dialysis”

Regional Operational Programme, East Macedonia and Thrace, Ministry of Development, Greece

European Regional Development Fund