Capturing Provenance, Evolution and Modification of Clinical Protocols via a Heterogeneous, Semantic Social Network

Nick Portokallidis, George Drosatos and Eleni Kaldoudi

School of Medicine, Democritus University of Thrace, Alexandroupoli, Greece

This work was supported by
eCP: Electronic Clinical Protocols project (MIS 375876),
 funded under the Greek National Programme Thales, co-funded by the European Commission.
and FP7-ICT project CARRE (No. 611140), funded by the European Commission.
A novel approach to describe, organize, manage, trace, use and reuse clinical protocols, based on a heterogeneous semantic social network.

- The proposed approach allows
 - Semantic tagging
 - Semantic enrichment

- Main advantages
 - Tracing protocol provenance, evolution and modifications
 - Protocol meta-description, irrespective of protocol source format
 - Interlinking to related scientific sources (e.g. scientific publications, PHR, etc.) and bodies (e.g. protocol issuing bodies, hospitals, etc.)
BACKGROUND
Formal care plans

• **Clinical guidelines**
 Systematically developed recommendations to address various clinical problems

• **Clinical protocols**
 Detailed algorithms on how to address a particular clinical problem (based on guidelines)

• **Care pathways**
 Care algorithms integrating multidisciplinary tasks for patient care in and outside the hospital (based on guidelines)

• **Other**, e.g. clinical trial protocols, clinical practice guidelines, ...
Examples of formal care plans
State of the art

- Protocol description languages
 - GLIF, EON, Asbru, GUIDE, PROforma, PLAN, ...
- Protocol execution engines and management platforms
 - GLEE, SAGE, DeGeL, NewGuide, SpEM, Tallis, ArezzoTM, HeCaSe2, ...
- Current unmet needs
 - Choose the right protocol
 - Choose the right modification of a protocol (to meet local set-up)
 - Trace protocol use and modification history
 - Trace to protocol provenance, including medical evidence and issuing body
 - Record outcomes of protocol clinical application (e.g. for protocol evaluation)
Our contribution

• Formal protocol meta-description
 – eCP ontology

• Versatile protocol ‘meta-repository’
 – Heterogeneous social network
ECP ONTOLOGY

Conceptual model of care plan meta-description
Conceptual model of care plan meta-description
Conceptual model of care plan **meta**-description
Conceptual model of care plan *meta*-description
Conceptual model of care plan **meta**-description

- **general description**
 - title
 - description

- **classification**
 - genre
 - type
 - related health issue

- **quality & level of recommendation**
 - high
 - moderate
 - low
 - very low
 - strong
 - weak

- **quality of evidence**
 - low
 - very low

- **strength of recommendation**
 - high
 - moderate
 - strong
 - weak

- **issuing body**
 - 1

- **evidence source**
 - 1...N

- **formal care plan**
 - 0...1
 - has
 - is issued by
 - is endorsed by
Conceptual model of care plan meta-description
Conceptual model of care plan **meta**-description

- **title**
- **description**
- **genre**
- **type**
- **related health issue**
- **quality of evidence**: low, very low
- **strength of recommendation**: high, moderate, strong, weak
- **outcomes**
- **issuing body**
- **evidence source**
- **requires**
- **resource**
- **initiated by**
- **is endorsed by**
- **is issued by**
- **observable condition**
- **observable**
- **quality & level of recommendation**
- **quality of evidence**
- **classification**
- **general description**
- **observable condition**
- **observable**
Conceptual model of care plan **meta**-description

general description
- title: 1
- description: 0..1

classification
- genre
- type
- related health issue: 1..N

quality of evidence
- high
- moderate
- low
- very low
- strength of recommendation
 - strong
 - weak
 - is a value of

formal care plan
- issuing body: 1
- evidence source: 1..N
 - is issued by
 - is endorsed by
- has: 1..N
- has: 0..1
- has: 1

outcomes
- 1..N

source file
- identifier
- copyright
- location
- format
- has: 0..N

observable condition
- 1..N

resource
- requires: 0..N

observable
- is part of: 1..N
Conceptual model of care plan *meta*-description
Ontology implementation

- Implemented with OWL2 using Protégé
- Integrated with commonly used standards and controlled vocabularies:
 - ICD-10, SNOMED-CT, QUDT, UO, GRADE and UMLS
Ontology implementation

Available online in: http://purl.bioontology.org/ontology/ECP
E-CLINPRO: CLINICAL PROTOCOL MANAGEMENT SYSTEM
Social networks

Connections and relationships among humans

CarePages
LinkedIn
Facebook

on line digital content, resources, concepts...
Object centered social networks

People interacting on a common social object

on line digital content, resources, concepts...

ResearchGate
Academia
PatientsLikeMe
Heterogeneous social networks

Human and non-human entities are all treated alike, as actors

on line digital content, resources, concepts...

Clinical protocol provenance, evolution and modification

• Provenance
 – Issuing bodies
 – Clinical practice guidelines
 – Scientific evidence sources

• Evolution
 – Update of a previous version, e.g. due to new evidence

• Modification
 – Infrastructure limitations, e.g. lack of a diagnostic equipment
 – Clinical restrictions, e.g. due to concurrent clinical protocols
 – Patient choices and objections, e.g. due to religion
 – Insurance policy constraints, e.g. to firstly perform a lower cost procedure
 – Adaptation to local settings, e.g. different language
 – Restrictions due to comorbidities
Example of clinical protocols’ relationships in the semantic social network

Health units

- University General Hospital of Alexandroupolis
- Hospital of Komotini "Sismanogleio"

Issuing bodies

- NICE
- KDIGO

Care plans

- Acute kidney injury (Protocol)
- Acute kidney injury (Guideline)
- Acute coronary syndrome (Pathway)
- Blood pressure in CKD (Guideline)
- Acute kidney injury (Protocol) - Greek

Issuing bodies

- NICE
- KDIGO
Semantic tagging and interlinking

• Profile of clinical protocol based on the eCP ontology¹

• Entry point: observables and observable condition described via the CARRE ontology²

• Issuing bodies and healthcare units are described following the SWRC ontology³

• Semantic tagging of medical terms with external resources via ICD-10 and SNOMED

• Medical evidence description based on the Bibliographic Ontology (via PubMed identifier and DOI)

Semantic tagging and interlinking

eCP
- General Information
- Technical Information
- Clinical Care Plan
- Evolution
- Exit Points

SWRC
- Issuing body
- Health Unit

CARRE
- Entry Point

ICD10, SNOMED-CT
- observables
- conditions
- resources

Bibliographic Ontology
(PubMed ID & DOI)
E-CLINPRO: IMPLEMENTATION
e-ClinPro implementation

• Backend
 – Server: NodeJS
 – API: LoopBack framework
 – Database: MongoDB

• Frontend
 – Visual Interface: AngularJS
 – Graph visualizations: Vis.JS

• Integration with
 – NCBO BioPortal API
 – PubMed API

• Available online in:
E-ClinPro: Login
E-ClinPro: Dashboard
E-ClinPro: Visualizations
E-ClinPro: Care plans list

- Helicobacter pylori
 - Diagnostic guideline
 - Helicobacter pylori
 - Dyspepsia
 - Entry points
 - Dyspepsia diagnosed AND (Melena diagnosed OR Hematemesis diagnosed OR Weight loss diagnosed OR Dysphagia diagnosed OR Anemia diagnosed)
 - Helicobacter pylori (Variation)
 - Diagnostic guideline (deviation)
 - Helicobacter pylori
 - Dyspepsia
 - Entry points

- Acute coronary syndrome
 - Management pathway
 - Acute coronary syndrome
 - Stable angina
 - Myocardial infarction
 - Chest pain
 - Hyperglycaemia, unspecified
 - Entry points
 - Chest pain yes AND (Assessment of chest pain yes AND Assessment of chest pain stable OR Assessment of chest pain unstable)
 - KDOQI Clinical Practice Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratification 2002
 - Diagnostic guideline
 - Chronic kidney disease stage 1
 - Chronic kidney disease stage 2
Acute kidney injury

Description
The kidneys clean the blood by removing waste products. Many different conditions can lead to the ki... More

Genre: Guideline
Type: Management
Related Health Issues:
- Acute nontraumatic kidney injury

Entry points:
((Serum creatine kinase measurement ≥ 300% of baseline OR Serum creatine kinase measurement ≥ 0.4 mg/dL) AND (Urine ≥ 0.3 mL/kg/hr OR Urine ≥ 100 mL/24h)) OR acute kidney injury diagnosis ≥ severe

Exit points:

Issuing Body: NICE
Evidence sources:
E-ClinPro: Edit care plan

Issuing body:
NICE

Select article to add as evidence:
Search in pubmed...

1. Improving early detection of chronic kidney disease.
 PMID: 25816501
 Authors: Larmour KE, Maxwell AP, Courtney AE. ©2015

2. Long-term prognosis after acute kidney injury (AKI): what is the role of baseline kidney function and recovery?
 A systematic review.
 PMID: 25564144
 Authors: Sawhney S, Mitchell M, Marks A, Ruck N, Black C. ©2015
E-ClinPro: Initial condition builder

User friendly output:

((Serum creatine kinase measurement \(>\) 300\% of baseline OR Serum creatine kinase measurement \(>\) 0.4 mg/dL) AND (Urine \(<\) 0.3 mL/kg/hr OR Urine \(<\) 100 mL/24h)) OR acute kidney injury diagnosis \(=\) severe)
CONCLUSION
Our contribution

• Formal protocol meta-description
 – eCP ontology

• Versatile protocol ‘meta-repository’
 – Heterogeneous social network
Work in progress

- Extensive ontology and system evaluation
 Structured interviews and focus groups of different types of system users, including experts, nurses, residents, and medical students

- Support relationships between doctors, patients, and protocols for clinical protocol evaluation based on the assessment of
 - The extent of clinical protocol use
 - Type and number of clinical protocol modifications
 - Outcomes of protocol clinical application
Acknowledgement

This work was financially supported by the projects

eCP: Development of electronic clinical protocols, (MIS 375876), the Greek National Programme Thales

CARRE Project: Personalized patient empowerment and shared decision support for cardiorenal disease and comorbidities, Grant no. 611140, FP7-ICT (http://www.carre-project.eu/)

both co-funded by the European Commission.
Cite as

N. Portokallidis, G. Drosatos, E. Kaldoudi

Capturing Provenance, Evolution and Modification of Clinical Protocols via a Heterogeneous, Semantic Social Network

Contact

Eleni Kaldoudi

Associate Professor
School of Medicine
Democritus University of Thrace
Alexandroupoli, Greece

Email: kaldoudi@med.duth.gr
http://iris.med.duth.gr/kaldoudi